
Taskfarm Documentation
Release 0.0

Magnus Hagdorn

Jan 19, 2023

CONTENTS:

1 Introduction 1

2 Installation 3
2.1 Local Installation . 3
2.2 Containerised Installation . 4

3 Taskfarm REST API 5

4 Indices and tables 9

HTTP Routing Table 11

i

ii

CHAPTER

ONE

INTRODUCTION

The taskfarm is a server-client application that tracks tasks to be completed. The server is provides a REST API to
create and update runs. This is the python server documentation.

This package solves the problem of managing a loosely coupled taskfarm where there are many tasks and the workers
are entirely independent of each other. Instead of using a farmer process a database is used to hand out new tasks to
the workers. The workers contact a web application via http(s) to get a new task.

You can use the taskfarm-worker python package to connect to the taskfarm service.

The server is implemented using the flask web framework and uses flask-sqlalchemy to connect to a relational database.

1

https://github.com/mhagdorn/taskfarm-worker
https://flask.palletsprojects.com/
https://flask-sqlalchemy.palletsprojects.com/

Taskfarm Documentation, Release 0.0

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 Local Installation

You can install the package from source after cloning the repository

git clone https://github.com/mhagdorn/taskfarm.git
cd taskfarm
python3 setup.py install

or simply using pip

pip install taskfarm

2.1.1 Setup

After installing the python package you need to connect to a database. For testing purposes you can use sqlite. However,
sqlite does not allow row locking so if you use parallel workers a single task may get assigned to multiple workers. For
production use you should use a postgres database instead.

You can set the environment variable DATABASE_URL to configure the database connection (see the SQLAlchemy
documentation). For example

export DATABASE_URL=sqlite:///app.db

or

export DATABASE_URL=postgresql://user:pw@host/db

You then need to create the tables by running

adminTF --init-db

You can then create some users

adminTF -u some_user -p some_password

These users are used by the worker to connect to the service.

3

https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls
https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls

Taskfarm Documentation, Release 0.0

2.1.2 Running the Taskfarm Server

The taskfarm server is a flask web application. For testing you can run it locally using

export FLASK_APP=taskfarm
flask run

You can check the service is running by browsing to http://localhost:5000/ or running

curl http://localhost:5000/

For a production setup you need to deploy the flask application using a WSGI server such as gunicorn. The flask
documentation lists the various options for self-hosting or hosting in the cloud a flask application.

2.2 Containerised Installation

Instead of installing the taskfarm server locally and managing the flask webapplication service you can run the taskfarm
server as a containerised service. You need a working docker setup and docker compose. The taskfarm service is built
using Ubuntu containers, one for the web application, one for the postgres database and one for the web server. You
can build and start the containers using

docker-compose build

You need to initialise the database and create a user, ie

docker-compose run web adminTF --init-db
docker-compose run web adminTF -u taskfarm -p hello

You can now start the service

docker-compose up -d

and you can reach the taskfarm server on port 80. You can check the service is running by browsing to http://localhost/
or running

curl http://localhost/

4 Chapter 2. Installation

http://localhost:5000/
https://gunicorn.org/
https://docs.docker.com/get-started/
https://docs.docker.com/compose/
http://localhost/

CHAPTER

THREE

TASKFARM REST API

Resource Operation Description
GET /

run POST /api/run create a new run
runs GET /api/runs get a list of all runs

POST /api/runs/(string:uuid)/restart restart all tasks of a run
GET /api/runs/(string:uuid)/tasks/(int:taskID) information about a particular task
PUT /api/runs/(string:uuid)/tasks/(int:taskID) update a particular task
POST /api/runs/(string:uuid)/task request a task for run
GET /api/runs/(string:uuid) get information about a particular run
DELETE /api/runs/(string:uuid) delete a particular run

token GET /api/token get the authentication token
worker POST /api/worker create a worker

GET /

print info about taskfarm server

POST /api/run

create a new run

Request JSON Object

• numTasks (int) – the number of tasks of the run

Response JSON Object

• id (int) – run ID

• uuid (string) – run UUID

• numTasks (int) – the number of tasks

Status Codes

• 400 Bad Request – when numTask is missing

GET /api/runs

get a list of all runs

Response JSON Array of Objects

• id (int) – run ID

• uuid (string) – run UUID

• numTasks (int) – the number of tasks

5

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Taskfarm Documentation, Release 0.0

DELETE /api/runs/(string: uuid)
delete a particular run

Parameters

• uuid (string) – uuid of the run

Status Codes

• 404 Not Found – when the run does not exist

• 204 No Content – when the run was successfully deleted

GET /api/runs/(string: uuid)
get information about a particular run

Parameters

• uuid (string) – uuid of the run

Query Parameters

• info – request particular information about the run.

Status Codes

• 404 Not Found – when the run does not exist

• 404 Not Found – when unkown information is requested

• 200 OK – the call successfully returned a json string

The info query parameter can be one of percentDone, numWaiting, numDone, numComputing to get particu-
lar information of the run. By default info is the empty string and call returns a json object containing all those
pieces of information.

POST /api/runs/(string: uuid)/restart
restart all tasks of run

Parameters

• uuid (string) – uuid of the run

Query Parameters

• all (string) – can be True/False (default). When set to to True restart all tasks otherwise
restart only partially completed tasks

Status Codes

• 400 Bad Request – when run with uuid does not exist

• 404 Not Found – when parameter all has wrong value

• 204 No Content – success

POST /api/runs/(string: uuid)/task
request a task for run

Parameters

• uuid (string) – uuid of the run

Request JSON Object

• worker_uuid (string) – uuid of worker requesting a task

Response JSON Object

6 Chapter 3. Taskfarm REST API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Taskfarm Documentation, Release 0.0

• id (int) – task ID

• task (int) – task number

• percentCompleted (float) – percentage compelted of task

• status (string) – task status, can be one of waiting, computing, done

Status Codes

• 400 Bad Request – when worker_uuid is not present

• 404 Not Found – when worker does not exist

• 404 Not Found – when run does not exist

• 204 No Content – no more tasks

• 201 Created – new tasks

GET /api/runs/(string: uuid)/tasks/
int: taskID
get information about a particular task

Parameters

• uuid (string) – uuid of the run

• taskID (int) – the task’s ID

Query Parameters

• info – request particular information about the task

Status Codes

• 404 Not Found – when the run does not exist

• 404 Not Found – when the taskID < 0 or when taskID is larger than the number of tasks

• 404 Not Found – when unkown information is requeste

• 200 OK – the call successfully returned a json string

The info query parameter can be one of status or percentDone to get particular information of the task. By
default info is the empty string and call returns a json object containing all those pieces of information.

PUT /api/runs/(string: uuid)/tasks/
int: taskID
update a particular task

Parameters

• uuid (string) – uuid of the run

• taskID (int) – the task’s ID

Request JSON Object

• percentCompleted (float) – percentage of task completed

• status (string) – status of task, can be waiting, computing, done

Status Codes

• 400 Bad Request – an error occurred updating the task

• 204 No Content – the task was successfully updated

7

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Taskfarm Documentation, Release 0.0

GET /api/token

get the authentication token

Response JSON Object

• token (string) – the authentication token

POST /api/worker

create a worker

Request JSON Object

• uuid (string) – worker uuid

• hostname (string) – hostname where worker is running

• pid (int) – process ID (PID) of worker

Response JSON Object

• uuid (string) – worker uuid

• id (int) – worker ID

Status Codes

• 400 Bad Request – when input json is incomplete

• 201 Created – when worker was created successfully

8 Chapter 3. Taskfarm REST API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

9

Taskfarm Documentation, Release 0.0

10 Chapter 4. Indices and tables

HTTP ROUTING TABLE

/
GET /, 5

/api
GET /api/runs, 5
GET /api/runs/(string:uuid), 6
GET /api/runs/(string:uuid)/tasks/(int:taskID),

7
GET /api/token, 7
POST /api/run, 5
POST /api/runs/(string:uuid)/restart, 6
POST /api/runs/(string:uuid)/task, 6
POST /api/worker, 8
PUT /api/runs/(string:uuid)/tasks/(int:taskID),

7
DELETE /api/runs/(string:uuid), 5

11

	Introduction
	Installation
	Local Installation
	Setup
	Running the Taskfarm Server

	Containerised Installation

	Taskfarm REST API
	Indices and tables
	HTTP Routing Table

