

Welcome to Taskfarm’s documentation!

Contents:

	Introduction

	Installation
	Local Installation

	Containerised Installation

	Taskfarm REST API

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The taskfarm is a server-client application that tracks tasks to be completed. The server is provides a REST API to create and update runs. This is the python server documentation.

This package solves the problem of managing a loosely coupled taskfarm where there are many tasks and the workers are entirely independent of each other. Instead of using a farmer process a database is used to hand out new tasks to the workers. The workers contact a web application via http(s) to get a new task.

You can use the taskfarm-worker [https://github.com/mhagdorn/taskfarm-worker] python package to connect to the taskfarm service.

The server is implemented using the flask [https://flask.palletsprojects.com/] web framework and uses flask-sqlalchemy [https://flask-sqlalchemy.palletsprojects.com/] to connect to a relational database.

Installation

Local Installation

You can install the package from source after cloning the repository

git clone https://github.com/mhagdorn/taskfarm.git
cd taskfarm
python3 setup.py install

or simply using pip

pip install taskfarm

Setup

After installing the python package you need to connect to a database. For
testing purposes you can use sqlite. However, sqlite does not allow row
locking so if you use parallel workers a single task may get assigned to
multiple workers. For production use you should use a postgres database instead.

You can set the environment variable DATABASE_URL to configure the database
connection (see the SQLAlchemy documentation [https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls]). For example

export DATABASE_URL=sqlite:///app.db

or

export DATABASE_URL=postgresql://user:pw@host/db

You then need to create the tables by running

adminTF --init-db

You can then create some users

adminTF -u some_user -p some_password

These users are used by the worker to connect to the service.

Running the Taskfarm Server

The taskfarm server is a flask web application. For testing you can run it locally using

export FLASK_APP=taskfarm
flask run

You can check the service is running by browsing to http://localhost:5000/ or running

curl http://localhost:5000/

For a production setup you need to deploy the flask application using a WSGI server such as gunicorn [https://gunicorn.org/]. The flask documentation lists the various options for self-hosting or hosting in the cloud a flask application.

Containerised Installation

Instead of installing the taskfarm server locally and managing the flask webapplication service you can run the taskfarm server as a containerised service. You need a working docker setup [https://docs.docker.com/get-started/] and docker compose [https://docs.docker.com/compose/]. The taskfarm service is built using Ubuntu containers, one for the web application, one for the postgres database and one for the web server. You can build and start the containers using

docker-compose build

You need to initialise the database and create a user, ie

docker-compose run web adminTF --init-db
docker-compose run web adminTF -u taskfarm -p hello

You can now start the service

docker-compose up -d

and you can reach the taskfarm server on port 80. You can check the service is running by browsing to http://localhost/ or running

curl http://localhost/

Taskfarm REST API

	Resource

	Operation

	Description

	
	GET /

	

	run

	POST /api/run

	create a new run

	runs

	GET /api/runs

	get a list of all runs

	
	POST /api/runs/(string:uuid)/restart

	restart all tasks of a run

	
	GET /api/runs/(string:uuid)/tasks/(int:taskID)

	information about a particular task

	
	PUT /api/runs/(string:uuid)/tasks/(int:taskID)

	update a particular task

	
	POST /api/runs/(string:uuid)/task

	request a task for run

	
	GET /api/runs/(string:uuid)

	get information about a particular run

	
	DELETE /api/runs/(string:uuid)

	delete a particular run

	token

	GET /api/token

	get the authentication token

	worker

	POST /api/worker

	create a worker

	
GET /

	print info about taskfarm server

	
POST /api/run

	create a new run

	Request JSON Object

	
	numTasks (int) – the number of tasks of the run

	Response JSON Object

	
	id (int) – run ID

	uuid (string) – run UUID

	numTasks (int) – the number of tasks

	Status Codes

	
	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – when numTask is missing

	
GET /api/runs

	get a list of all runs

	Response JSON Array of Objects

	
	id (int) – run ID

	uuid (string) – run UUID

	numTasks (int) – the number of tasks

	
DELETE /api/runs/(string: uuid)

	delete a particular run

	Parameters

	
	uuid (string) – uuid of the run

	Status Codes

	
	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – when the run does not exist

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – when the run was successfully deleted

	
GET /api/runs/(string: uuid)

	get information about a particular run

	Parameters

	
	uuid (string) – uuid of the run

	Query Parameters

	
	info – request particular information about the run.

	Status Codes

	
	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – when the run does not exist

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – when unkown information is requested

	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – the call successfully returned a json string

The info query parameter can be one of percentDone,
numWaiting, numDone, numComputing to get
particular information of the run. By default info is the
empty string and call returns a json object containing all
those pieces of information.

	
POST /api/runs/(string: uuid)/restart

	restart all tasks of run

	Parameters

	
	uuid (string) – uuid of the run

	Query Parameters

	
	all (string) – can be True/False (default). When set to
to True restart all tasks otherwise restart only partially
completed tasks

	Status Codes

	
	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – when run with uuid does not exist

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – when parameter all has wrong value

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – success

	
POST /api/runs/(string: uuid)/task

	request a task for run

	Parameters

	
	uuid (string) – uuid of the run

	Request JSON Object

	
	worker_uuid (string) – uuid of worker requesting a task

	Response JSON Object

	
	id (int) – task ID

	task (int) – task number

	percentCompleted (float) – percentage compelted of task

	status (string) – task status, can be one of waiting,
computing, done

	Status Codes

	
	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – when worker_uuid is not present

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – when worker does not exist

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – when run does not exist

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – no more tasks

	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – new tasks

	
GET /api/runs/(string: uuid)/tasks/(int: taskID)

	get information about a particular task

	Parameters

	
	uuid (string) – uuid of the run

	taskID (int) – the task’s ID

	Query Parameters

	
	info – request particular information about the task

	Status Codes

	
	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – when the run does not exist

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – when the taskID < 0 or when taskID is larger
than the number of tasks

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – when unkown information is requeste

	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – the call successfully returned a json string

The info query parameter can be one of status or
percentDone to get particular information of the task.
By default info is the empty string and call returns a
json object containing all those pieces of information.

	
PUT /api/runs/(string: uuid)/tasks/(int: taskID)

	update a particular task

	Parameters

	
	uuid (string) – uuid of the run

	taskID (int) – the task’s ID

	Request JSON Object

	
	percentCompleted (float) – percentage of task completed

	status (string) – status of task, can be waiting,
computing, done

	Status Codes

	
	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – an error occurred updating the task

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – the task was successfully updated

	
GET /api/token

	get the authentication token

	Response JSON Object

	
	token (string) – the authentication token

	
POST /api/worker

	create a worker

	Request JSON Object

	
	uuid (string) – worker uuid

	hostname (string) – hostname where worker is running

	pid (int) – process ID (PID) of worker

	Response JSON Object

	
	uuid (string) – worker uuid

	id (int) – worker ID

	Status Codes

	
	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – when input json is incomplete

	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – when worker was created successfully

 HTTP Routing Table

 / |
 /api

 		 	

 		
 /	

 	
 	
 GET /	

 		 	

 		
 /api	

 	
 	
 GET /api/runs	

 	
 	
 GET /api/runs/(string:uuid)	

 	
 	
 GET /api/runs/(string:uuid)/tasks/(int:taskID)	

 	
 	
 GET /api/token	

 	
 	
 POST /api/run	

 	
 	
 POST /api/runs/(string:uuid)/restart	

 	
 	
 POST /api/runs/(string:uuid)/task	

 	
 	
 POST /api/worker	

 	
 	
 PUT /api/runs/(string:uuid)/tasks/(int:taskID)	

 	
 	
 DELETE /api/runs/(string:uuid)	

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Taskfarm’s documentation!

 		
 Introduction

 		
 Installation

 		
 Local Installation

 		
 Setup

 		
 Running the Taskfarm Server

 		
 Containerised Installation

 		
 Taskfarm REST API

_static/plus.png

_static/file.png

_static/minus.png

